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While performing molecular-dynamics simulations of a simple monatomic liquid, we observed the crystal-
lization of a material displaying octagonal symmetry in its simulated diffraction pattern. Inspection of the
atomic arrangements in the crystallization product reveals large grains of the �-Mn structure aligned along a
common fourfold axis, with 45° rotations between neighboring grains. These 45° rotations can be traced to the
intercession of a second crystalline structure fused epitaxially to the �-Mn domain surfaces, whose primitive
cell has lattice parameters a=b=c=a�-Mn, �=�=90°, and �=45°. This secondary phase adopts a structure
which appears to have no known counterpart in the experimental literature, but can be simply derived from the
Cr3Si and Al3Zr4 structure types. We used these observations as the basis for an atomistic structural model for
octagonal quasicrystals, in which the �-Mn and the secondary phase structure unit cells serve as square and
rhombic tiles �in projection�, respectively. Its diffraction pattern down the octagonal axis resembles those
experimentally measured. The model is unique in being consistent with high-resolution electron microscopy
images showing square and rhombic units with edge-lengths equal to that of the �-Mn unit cell. Energy
minimization of this configuration, using the same pair potential as above, results in an alternative octagonal
quasiperiodic structure with the same tiling but a different atomic decoration and diffraction pattern.
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I. INTRODUCTION

Quasicrystals are materials whose diffraction patterns
show what at first glance is a striking contradiction: the sharp
peaks normally arising from long-range periodicity, arranged
in patterns of icosahedral, decagonal, dodecagonal, or oc-
tagonal symmetries—all fundamentally incompatible with
periodic ordering. Since the discovery of these puzzling and
wonderful objects,1 significant progress has been made in
characterizing the atomic arrangements underlying their dif-
fraction patterns. For instances of both the icosahedral and
decagonal families, detailed crystal structures have been
solved from x-ray diffraction data,2,3 while the solution of a
series approximant structures to the Ta1.6Te quasicrystal, also
from x-ray diffraction experiments, has brought insights into
the atomic geometries in the dodecagonal family.4–6

In contrast, only limited structural information is available
for the octagonal family of quasicrystals. Just a handful of
examples have been experimentally realized, those in the
V-Ni-Si, Cr-Ni-Si, Mn-Si, and Mn-Si-Al systems.7–9 In all of
these cases, their preparation involves the rapid cooling of an
alloy melt, a method not conducive to the formation of high
quality crystals for structural analysis with x rays. Prolonged
heating, the most likely path to the growth of such crystals,
inevitably leads to decomposition of the quasicrystal, usually
into a �-Mn-type phase,7,8,10 but the formation of a
AuCu3-type phase has also been observed.11 Because of this
metastability, the techniques for investigating these phases
experimentally have been limited mainly to high-resolution

electron microscopy �HREM� and electron diffraction.
Such studies revealed that these structures can be viewed

as octagonal tilings of square and rhombi units �with 45°
angles at their acute corners�, which is one of several pos-
sible tilings giving octagonal symmetry,12,13 and can be em-
bedded into higher-dimensional spaces using superspace
methods.14,15 It was also observed that the edges of these
units are metrically equal to that of a �-Mn-type structure.7

However, the positions of individual atoms have not been
thus far resolvable. This gap between the experimental inves-
tigations of octagonal quasicrystals and their detailed struc-
tures at the atomic level places obvious limits on our ability
calculate theoretically their physical properties. In attempts
to calculate their electronic structure16 and vibrational
properties,17 researchers were forced to resort to an unrealis-
tic model in which a single atom is placed at every vertex of
an octagonal tiling of squares and rhombi.

Several attempts have been made to fill this gap. Two
different structure models, those of Kuo et al.15,18,19 and
Hovmöller et al.20 have been proposed making use of the
apparently close structural relationship between the octago-
nal quasicrystals and the �-Mn structure. Both models ex-
tract square and rhombus units from the �-Mn structure, and
then use these as tiles in an octagonal tiling, the difference
being in the definition of the square and rhombic units.
While these models exhibit diffraction patterns with similari-
ties to the experimentally measured ones, they are incompat-
ible with the tile-edge lengths measured from HREM im-
ages. A third model proposed by Hovmöller et al. derived
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from three-dimensional �3D� reconstructions of HREM im-
ages also is inconsistent with this observation.21

In this paper, we use the results of molecular-dynamics
simulations in an attempt to bring understanding of the struc-
tures of octagonal quasicrystals. This approach has been suc-
cessfully employed by us and others to observe the formation
of dodecagonal and decagonal quasicrystals from monatomic
liquids.22–25

In our continued work with such simulations, we came
across a crystallization product which showed an octagonal
symmetry axis in its calculated diffraction pattern. In the
course of this paper, we will examine the origins of this
octagonal diffraction pattern in the atomic arrangements of
the sample. As we will see below, this octagonal symmetry
arises from a 45° difference in orientation between large
grains of the �-Mn structure type, rather than the occurrence
of a true octagonal phase. However, the geometrical reasons
for these 45° relative rotations form the roots of a new struc-
tural model for octagonal quasicrystals. This model affords
not only a diffraction pattern with correspondence to the ex-
perimental ones down the octagonal axis, but also is unique
in having the �-Mn unit cell repeat period as the length of its
square and rhombus units, in accord with HREM images.
Central to this construction are 83 screw helices implemented
in Hovmöller et al.’s 1991 model20—this time used in a dif-
ferent decoration of the square and rhombic tiles.

II. �-Mn FORMATION IN MOLECULAR-DYNAMICS
SIMULATIONS

Our investigations into the structures of octagonal quasi-
crystals began with some simulations of a monatomic liquid,
using a pair potential designed to encourage icosahedral
ordering. We started this simulation by first equilibrating a
system of atoms in a high-temperature liquid state. We
then began a stepwise cooling at constant density
��=0.84 atoms /unit volume, in reduced units, see Appen-
dix� with intermediate equilibration. At a point in this cool-
ing, the system showed a marked drop in potential energy,
pressure, and diffusivity, indicating crystallization �for fur-
ther details of the simulation, see Appendix�.

To identify the crystallization product, we first analyzed
the radial distribution function g�r� and the structure factor
S�Q� of the sample. These confirmed that the structure had
relatively long-range order, indicative of a crystalline struc-
ture. We then turned to a more detailed analysis of the dif-
fraction pattern. The diffraction intensities for a configura-
tion of N point particles are calculated as

S�Q� = N−1��
i=1

N

eiQri�2

, �1�

where vectors ri denote the particle positions. First we deter-
mined the orientations of the crystallographic axes of the
phase in reciprocal space. To do this, we plotted the values of
S�Q� on the sphere in reciprocal space corresponding to the
maximum of S�Q�. What we found was surprising: a sym-
metry axis of eightfold symmetry, with eight perpendicular
twofold axes. Having found this octagonal symmetry axis,

we then calculated diffraction intensities in the plane perpen-
dicular to it �Fig. 1�. In this reciprocal space plane, the eight-
fold symmetry is apparent. Hence we arrive at the, now clas-
sical, contradiction seen in quasicrystals of sharp diffraction
spots indicative of long-range order and rotational symmetry
incompatible with periodic ordering.

This encouraged us to look at the real-space atomic con-
figuration. Instead of the expected octagonal atomic arrange-
ments, we found large domains of a crystalline structure.
Figure 2 shows approximately 7000 atoms in the simulation
box, with two grains of this structure highlighted in green
and red, respectively. Unit-cell edges for these crystallites are
drawn in with yellow squares. Further inspection of these
grains revealed them to be of the �-Mn structure type. A look
at these cell edges reveals that the crystallographic axes of
the two grains have different orientations. In the domain
marked in green, these are aligned with the horizontal and
vertical directions of the page. In the red one, however, they
are oriented diagonally. The green and red domains are, in
fact, rotated by 45° relative to each other. This 45° rotation
accounts for the eightfold character of the diffraction pattern
calculated for this geometry.

The occurrence of these beta-Mn grains together with the
interstitial spaces between them correlates with density het-
erogeneities, the crystalline grains coinciding with the denser
regions. This result can be rationalized in terms of energet-
ics: model calculations show that the �-Mn structure is an
energy minimum for this potential, with the ideal density
being �=0.96, compared to �=0.84 in the simulation. In-
deed, the difference in unit-cell size between the �-Mn cells
in the sample and that of the ideal crystal at �=0.96 is less
than 1%.

The small �-Mn crystallites are not the only geometrical
regularity that can be recognized in Fig. 2. At the edges of
the green and red domains, near the center of the figure, two
sets of cross-linked rows of atoms are highlighted in blue.
Similar rows recur frequently as terminating features at the
�-Mn domain surfaces. As shown with yellow lines overlaid
on these atoms in blue, a unit cell can be identified for this
pattern. In other words, these surface features correspond to
small domains of a second crystalline phase in the simulation
result. The unit cell for this phase appears as a rhombus in

FIG. 1. Calculated diffraction intensities for our simulation crys-
tallization product in the plane perpendicular to the octagonal axis.
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this projection, and for this reason we will refer to it as the
rhombic phase. As we will see in Sec. III, a closer inspection
of this structure provides insights into the prominence 45°
twinning in this sample, and the relationship between the
�-Mn structure and octagonal quasicrystals.

III. SECOND PHASE: RHOMBI WITH THE SQUARES

Upon identifying the rhombic phase, we read off approxi-
mate atomic coordinates from the positions in the simulation
result and generated a fully periodic model. Prompted by the
close match in cell parameters to those of the �-Mn struc-
ture, and the near 45° angle of the rhombus, we idealized the
unit cell to a=b=c, �=�=90°, �=45°. We then performed a
steepest-descent energy minimization to obtain more accu-
rate atomic positions. The resulting rhombic phase structure
is shown in Figs. 3 and 4.

As far as we can tell, this crystal structure has no coun-
terpart in the experimental literature. However, it shows
structural similarities to the Frank-Kasper family of struc-
tures, and can be viewed as a derivative of the Cr3Si and
Al3Zr4 structure types. This is illustrated in Fig. 3, in which
we show that the structures of both Al3Zr4 and the rhombic
phase in our simulations can be derived by introducing varia-
tions into the Cr3Si structure type. The Cr3Si type can be
viewed �along with many other ways� as a stacking of nets:
nets built from hexagons and triangles �red and blue� alter-
nate with more open square ones �gray spheres, dotted lines�.
The Al3Zr4 structure, when viewed down the �100� direction,
shows similar features.26 In fact, a simple way to generate
the Al3Zr4 structure is to begin with the Cr3Si type and in-
troduce shear planes in rows parallel to one set of lines in the
Cr3Si-type’s square nets, as shown with green lines in the top
right corner of Fig. 3. Across each of these planes we intro-
duce a shift of half of a unit cell out of the page �accompa-
nied by the deletion of some atoms that come into near co-

incidence with atoms on the other side of the shear plane
following the shift�. If we introduce one such shear plane for
every row of squares in the projection of Fig. 3, we arrive at
the Al3Zr4 structure type.

The rhombic phase in our simulations can be derived
from the Cr3Si structure in a similar manner. At the bottom
of Fig. 3, we show a view of the rhombic phase structure
perpendicular to that of Fig. 2. In this view, similarities to the
Cr3Si structure can be seen in the square nets �with some
distortion� and the filling of these squares with atoms in red
and blue. The details of the structure can be derived, just as
for the Al3Zr4 structure type, by inserting shear elements into
Cr3Si-type parent structure. While in the Al3Zr4 structures
these shear elements occur as regularly spaced planes paral-
lel to one set of lines in the square nets, in the rhombic phase
the shears occur diagonally across the square net, moving
through the square nets in a zigzag pattern. The rhombic
phase structure can be seen then as a variation on the Al3Zr4
structure.

A look at this structure from a different viewpoint, down
the same direction as in Fig. 2, helps us to understand why
this phase so frequently appears at the surfaces of �-Mn
crystallites in the simulation. In Fig. 4 we illustrate this for a

FIG. 2. �Color� Two regions of the �-Mn structure �green and
red� and their surroundings in the crystallized sample resulting from
our molecular-dynamics simulation �see text�. Perpendicular to the
plane of the page, the crystallographic order of these grains propa-
gates infinitely �the sample periodic along this direction, with a
repeat period corresponding to eight �-Mn cells�. Small fragments
of a second crystalline phase can be perceived between these grains
�blue�. Yellow lines trace out unit cells of these two structures. As
the secondary phase unit cell appears as a nearly 45° rhombus in
this projection, we will refer to this as the rhombic phase structure.

FIG. 3. �Color� Structural relationships between the second
phase detected alongside �-Mn in molecular-dynamics simulations
�the rhombic phase�, and two well-known intermetallic structure
types: those of Cr3Si and Al3Zr4. In these projections, atoms in red
and blue are at heights 0 and 1/2, respectively. Those in light gray
occur at both heights 1/4 and 3/4. Green bars: shear planes across
which regions of local Cr3Si structure type geometry are interrupted
by shifts in height of 1/2, with the deletion of some atoms which are
brought into near coincidence with others following these shifts. A
black arrow shows the orientation of the octagonal axis occurring in
the simulation results.
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single unit cell of the rhombic phase, with the heights of the
atoms given with white numbers �in fractions of the unit-cell
repeat vector coming out of the page�. In this view, the rhom-
bic phase unit cell appears as a rhombus with circular eight-
atom wreaths of atoms at each corner �and the very center of
the cell�. A closer inspection of the heights of the atoms in
one of these wreaths reveals that they trace out helices com-
ing out of the plane of the page, with a local 83 symmetry
axis passing through the center of the ring.

These 83 helices have close counterparts in the �-Mn
structure. In the left and right of Fig. 4 we draw unit cells of
the �-Mn with their unit-cell edges aligned with those of the
rhombic phase cell. The corners of the �-Mn cells show
similar helices as in the rhombic phase. In fact, if we com-
pare the heights of the atoms at the cell edges of the two
structures types, we find a one-to-one correspondence of at-
oms at nearly identical sites. A nearly perfect epitaxial map-
ping exists between the sides of the �-Mn unit cell, and those
of the rhombic phase. It is not surprising, then, that grains of
�-Mn should be terminated by layers of the rhombic phase.

This epitaxial mapping can be used to understand the
prevalence of �-Mn grains oriented relative to each other by
a 45° rotation. Note from Fig. 4 that the rhombic phase can
interface with �-Mn crystallites at both its �100� and �010�
sets of planes. As the � angle of this unit cell is 45°, these
two sets of planes are also inclined relative to each other by
45°. A �-Mn crystallite interfacing with a �100� plane will
thus be misaligned by 45° relative to another crystalline in-
terfacing with a �010� plane. We posit that the 45° twinning
in our simulations results from the presence of this rhombic
phase in the interstices between �-Mn grains.

Several factors in the energetics of the �-Mn and rhombic
phase structures elucidate the observations we have made in
our simulations. The �-Mn is energetically preferable with
the current potential, consistent with the fact that we see
more atoms in the �-Mn domains than in the rhombic phase
one in our simulation results. More importantly, the two
structures have energy minima at nearly equal densities �0.96

for �-Mn, 0.95 for the rhombic phase�, and these densities
give almost identical unit-cell lengths, making intergrowth of
the two structures particularly facile.

With the ease with which unit cells of �-Mn and the
rhombic phase fit together, it is tempting to imagine other
ways of arranging them in space to generate new structures.
After all, octagonal quasicrystals are usually viewed as til-
ings of squares and rhombi just like these. It is indeed tempt-
ing, and, as we shall see in Secs. IV and V, this is a tempta-
tion we cannot resist.

IV. TILING WITH THE STRUCTURES OF �-Mn
AND THE RHOMBIC PHASE

In Secs. II and III, we identified two crystalline structure
types in the results of our molecular-dynamics simulations of
a simple monatomic liquid, those of �-Mn and a previously
unobserved structure, which we will call the rhombic phase.
The unit-cell dimensions and atomic arrangements in these
two structures are propitious to the formation of epitaxial
interfaces between them. In the simulations, this is reflected
in the appearance of rhombic phase layers terminating grains
of the �-Mn structure. Many more possibilities become evi-
dent when we imagine the unit cells of these structures as
square and rhombic tiles with which we can cover the plane
�taking the periodic stacking of the cells in the third dimen-
sion as a given�, the square and rhombic tiles being derived
from the �-Mn and rhombic phase structures, respectively. In
the following paragraphs, we will show that the unit cells of
these two structures are compatible with any tiling of squares
and rhombi.

Several interface types are geometrically feasible using
these two tiles. We have already seen that the squares join

FIG. 4. �Color online� Epitaxial matching between the �100�
planes of the �-Mn structure and the �100� and �010� planes of the
rhombic phase structure. �-Mn grains interfacing at these two dif-
ferent planes of the rhombic phase differ in their orientation by 45°.
Atoms to be merged at the interface are drawn in blue in the online
version.

FIG. 5. �Color online� Epitaxial interface between one rhombic
phase unit cell, and a second cell generated from the first using an
83 symmetry operation. Atoms to be merged at the interface are
drawn in blue in the online version.
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naturally at the corners and edges with the rhombi �corners
and edges referring to the two-dimensional �2D� projection
in Fig. 4 and those to come; in 3D, they are cell edges and
faces, respectively�. Interfaces between two square tiles and
between two rhombic tiles are seen, of course, in the crystal
structures from which they are derived. In Fig. 5 we show a
fourth interface type, between two rhombic tiles differing in
orientation by 45°. The local pseudo-83 symmetry axes pass-
ing through the corners of the rhombic phase unit cell make
it possible to fuse two such tiles. The two tiles simply need
to be related by an 83 operation, i.e., the 45° difference in
orientation is accompanied by a 3/8 shift in the heights of the
atoms between tiles. As can be seen in the figure, applying
such a 83 operation to one rhombic tile creates a second tile
which is well suited to edge sharing with the original one.
While there is some degree of mismatch in the coordinates
within the plane, due to the approximate nature of the 83
axis, there is a one-to-one correspondence between the atoms

at the edge to be shared between the two tiles. Also, all
corresponding atoms at the edge match in height within 1%
of the unit cell repeat distance out of the plane. In summary,
the pseudo-83 symmetry of the rhombic tiles’ corners means
that two rhombic tiles related by an 83 symmetry element at
a corner can be edge-fused together.

Similar geometrical arguments can be used to derive a
simple matching rule for building larger structures with
square and rhombic tiles. Both tiles have pseudo-83 symme-
try axes at their corners. This means that when two tiles
come together, they can share corners or edges, as long as
their difference in orientation is accompanied by an appro-
priate relative translational shift of their atoms out of the
plane. Specifically, clockwise rotations of a tile by 45° must
be accompanied by translations in height of 3/8. These trans-
lational shifts align the phases of the helices at their corners
so that they meet in register. Adherence to this rule can be
seen in the interface figures presented so far, Figs. 4 and 5. In
both figures, each 83 helix at a tile corner occurs with the
same orientation and phase.

The key role played by the 83 axes in this matching rule
suggests a simple notation for describing structures based on
these tiles. In Fig. 6�a�, we show an idealized 83 helix,
viewed down its long axis, with the heights of the atoms
drawn in both decimal and fraction notations. The height of
each atom can be expressed as a different multiple of the
fraction 3/8. We can simplify this picture by representing the
helix as a circle divided into eight equal slices �Fig. 6�b��,
with each slice color coded according to the height of the
atom occupying that octant in the view of Fig. 6�a�.

An example of how this notation can be used in structural
descriptions is given in Fig. 7�a�, in which we take another
look at the �-Mn / rhombic phase /�-Mn interface of Fig. 4.
Here, rather than seeing simple geometrical figures decorated
by complex arrangements of atoms at various heights, we

FIG. 6. �Color� A simplified notation for the 83 helices occurring
in the �-Mn and rhombic phase structures. �a� An idealized 83 helix
projected down its helical axis. Heights for the atoms are given in
both decimal notation and as multiples of 3/8. �b� A color wheel
representation of this helix. The wheel is divided into eight wedges,
each color-coded according to the height of the atom occurring in
the corresponding octant in the projection of �a�.

FIG. 7. �Color� Illustration of tiling a space with cells of the �-Mn and rhombic phase structures, appearing, respectively, as square and
rhombic tiles in projection. �a� Simplified representation of the interfaces in Fig. 4, in which the 83 helices at the tile corners are drawn with
the color-wheel notation of Fig. 6. The remaining atoms in the cells are not shown in this representation for the sake of clarity. �b� A
graphical demonstration that the two square tiles in �a� can be generated from each other via 83 symmetry operations. �c� An octagonal
cluster built from �-Mn and rhombic phase tiles. Six distinct tiles occur in this pattern; one instance of each is shaded in gray. This octagonal
cluster can be generated using the four basis vectors given in the lower left corner. See text for a proof that the six distinct tiles indicated here
can be used to decorate any tiling of squares and rhombi.
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now see a rhombus meeting two squares, with colorful
wheels at all of the corners. At both interfaces the circles at
the corners match in their color patterns, meaning that they
can merge in a facile manner.

The color-wheel notation also simplifies the investigation
of relationships between tiles in different orientations. In Fig.
7�b�, we show a simple graphical demonstration that the two
square tiles are related by a 83

−1 operation. This symmetry
relationship means that while the color patterns differ within
the square interiors of these two tiles, they represent the
same crystal structure. They differ only in their orientations
and by a relative shift in their atomic heights. We see, then,
that this particular arrangement of tiles is compatible with a
simple intergrowth of the �-Mn and rhombic phase structure
types. No new geometrical arrangements have been forced
within the tiles.

More complex patterns of squares and rhombi can be cre-
ated, and their feasibility checked, using the same notation.
In Fig. 7�c�, we have generated an octagonal cluster, starting
at the center with an eightfold star built from eight rhombi
sharing a central point. The niches of this star were then
filled in with squares, with the nascent joints serving as sock-
ets for additional rhombi. The atomic geometries required by
this octagonal figure can be probed by placing color wheels,
again representing 83 helices, at each corner with the same
phase, and inspecting the resulting tile colorings. As can be
seen by inspection of the tiles, the entire pattern is built up
from only six distinct tile types. One example of each is
shaded in with gray. Two are square tiles, which are identical
to those found in Figs. 7�a� and 7�b�. As we saw above, they
both represent a single unit cell of the �-Mn structure. The
remaining four are rhombic tiles. The first of these is ori-
ented vertically as in the central rhombus of Fig. 7�a�, and
the remaining three are generated from this by the applica-
tion of one, two, and three 83 operations. As each of these
rhombic tiles is related to the others by 83 operations, we can
see that their decorations are single unit cells of the same
structure type, the rhombic phase type. No new geometrical
arrangements in the atomic decorations of the tiles have been
enforced by this tiling pattern. Furthermore, as these 83 op-
erations leave the color patterns on the color-wheels invari-
ant, these rhombic tiles join naturally at their corners and
edges.

From this octagonal figure, we can generalize these obser-
vations to show that any tiling pattern of squares and rhombi
can be decorated by single unit cells of the �-Mn and rhom-
bic phase structure types. This can be done in three steps: �1�
we note that while the pattern is fairly intricate, inspection of
the pattern shows that it is based on only four basis vectors:
a1, a2, a3, and a4 as drawn in the lower left corner of Fig.
7�c�. Starting with the central color wheel, the full octagonal
pattern can be generated by taking linear combinations of
these basis vectors. �2� In our second step, we observe that
there are a limited number of squares and rhombi that can be
generated by making rings with these translation vectors.
They are in fact those six distinct tiles that we have high-
lighted in Fig. 7�c�. Any tiling of squares and rhombi traced
out by linear combinations of these four basis vectors will
contain only these six tiles. �3� In our third and final step, we
recognize that these basis vectors are sufficient to create any

tiling of squares and rhombi that we may desire.
To summarize these arguments, we have found that the

pseudo-83 symmetry elements at the corners of the unit cells
of both the �-Mn and rhombic phase structures allow us to
use these as square and rhombic tiles, respectively, with
which we can tile the plane in any arrangement. This would
of course include quasiperiodic patterns such as those indi-
cated by the electron microscopy studies of V-Ni-Si, Cr-Ni-
Si, and Mn-Si-Al alloys by Kuo and co-workers. Our
�-Mn / rhombic phase intergrowth tilings provide the possi-
bility of proposing atomistic models for such alloys to
supplement the limited resolution of such microscopy inves-
tigations. We will explore this possibility in Sec. V of this
paper.

V. QUASICRYSTAL MODELING

Octagonal tilings using rhombi and squares have already
been extensively described.12 Such tilings rely on specific
rules that enforce an aperiodic octagonal tiling. They also
include inflation rules making it possible to go from a given
tiling to one with more tiles per unit area, while preserving
the aperiodicity and octagonal nature. Of particular impor-
tance for our work, which uses simulation programs requir-
ing periodic structures, is the observation that applying these
inflations to periodic approximant structures leads to better
and better approximants to the full aperiodic tiling.27

Zijlstra16 has constructed one periodic approximant which is
well suited to this application; it has the advantage of con-
taining only one vertex where the tiling rules leading to qua-
siperiodicity are broken. In the following we will use a one
step inflation of this tiling as the basis for the construction of
a structural model of octagonal quasicrystals. This inflation
gives a tiling of 239 tiles per unit cell, as seen in Fig. 8�a�, in
which the tiles are delineated with black edges.

Having constructed an approximate octagonal tiling of
squares and rhombi, we now decorate the tiles following the
considerations of Sec. IV. We place unit cells of the rhombic
phase and �-Mn structure on the rhombic and square tiles,
respectively, with the appropriate translational shifts to pre-
serve the local 83 symmetry at the tile corners.

This decoration leaves room for significant freedom in
choosing the exact atomic positions within the tiles, particu-
larly if we remove the requirement that these cells obey the
symmetries of their native lattices. The only requirement is
that the 83 screws at the vertices and dumbbell atoms at each
tile edge are preserved. We followed two main routes when
selecting the exact atomic coordinates. In one, we tried to
optimize the fit to the experimental diffraction pattern.19 In
doing this, we assumed perfect 83 screws at each vertex and
dumbbells centered at the edges; we then varied the internal
distances in and rotations of these elements, while making
sure reasonable interatomic distances were preserved. We
will call the result of this the idealized decoration. In our
second approach, we aimed at finding the structure with
minimal energy with our potential. To do this, we performed
a steepest-descent energy minimization on the atomic con-
figuration resulting from the first approach.

The result of these two approaches can be found in Fig. 8,
along with their simulated electron-diffraction patterns
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�putting a Mn atom at each atomic position, and adjusting the
length scale accordingly�.28 In both diffraction patterns we
have inferred twinning with a mirror along the vertical axis
in the electron-diffraction pattern to reconcile the promi-
nence of chiral 83 screws present in our model with the clear
mirror symmetry apparent in the experimental diffraction
patterns, and the determination of the point symmetry of a
Mn-Si-Al octagonal quasicrystal as 8 /m or 8 /mmm through
convergent beam electron-diffraction measurements.8

Note that while the atomic arrangements resulting from
these two approaches show rather small differences �Figs.
8�a� and 8�c��, these differences cause major changes in the
electron-diffraction patterns �Figs. 8�b� and 8�d��. The most
striking difference is that the diffraction intensity in is rather
uniformly distributed about octagonal axis before the energy
minimization �Fig. 8�b��, but becomes spoked in appearance
afterwards �Fig. 8�d��.

This difference between the diffraction patterns can be
understood by a more detailed comparison of the atomic ar-
rangements before and after the energy minimization. Over
the course of the energy minimization, the circular form of
the 83 helices in the idealized structure of Fig. 8�a� has mor-
phed into more squarelike arrangements �in projection, Fig.
8�c��. This squaring of the 83 helices is reminiscent of the
corresponding helices in the �-Mn structure. In fact, during
the minimization each tile has returned to a form much
closer to the original unit cells of �-manganese and the

rhombic phase. Clearly our potential favors the local envi-
ronments of the �-Mn structure to those of the idealized
decoration. Even so, the octagonal nature of the minimized
structure is still apparent in both real and reciprocal space
images; hence our simple spherical potential gives a mini-
mum for this complicated octagonal structure.

We are now in a position to understand the spoked appear-
ance of the diffraction pattern of the energy minimized struc-
ture �Fig. 8�c��. The spokes of intensity in the pattern lie
parallel to the square tile edges in the real-space structure. In
the true �-Mn structure these edges would lie parallel to
41-screw axes, which are known to create systematic ab-
sences in diffraction patterns. For instance, a 41 axis along a
leads to the rule that for reflections with k=0 and l=0, only
reflections with h=4n will give nonzero intensity. In the ide-
alized structure, our idealization procedure has destroyed the
41 symmetry elements perpendicular to the octagonal axis,
allowing a more uniform distribution of intensity about this
axis. With the return of �-Mn type character in the relaxed
structure, these 41 axes have returned, at least on a local
level; thus the observed spoked appearance of Fig. 8�d� is not
surprising.

As we described above, the idealized decoration was de-
signed to give the best obtainable �by us� match to the ex-
perimentally measured electron-diffraction patterns. A de-
tailed comparison between the simulated pattern for this
structure to one of the highest quality electron-diffraction
images measured to date19 can be found in Fig. 9. Here, we
use yellow spots to highlight key correspondences between
the two patterns. While there are some differences between
the two patterns, the correspondence is still clear. The chief
differences are that �1� two peaks are missing, one rather
strong outer peak and a less intense peak along the vertical
axis and �2� some weak or moderate peaks present in the
simulated pattern are not visible in the experimental pattern.
The extra peaks in the simulated pattern can easily be attrib-
uted to the fact that this pattern is calculated for a perfectly
ordered structure; such perfection is not expected to occur in
the experimental sample, particularly with the coarseness of
the preparation method used. The missing peaks are harder to

FIG. 8. Octagonal quasicrystal approximants built from cells of
the �-Mn and rhombic phase structures using the considerations of
Sec. IV �see text�, and their simulated diffraction patterns. �a� Ide-
alized structure. �b� A simulated electron-diffraction precession
photograph of the hk0 layer calculated for this structure. �c� The
structure resulting from a steepest-descent energy minimization of
the structure in �a�. �d� The simulated diffraction pattern for this
minimized structure.

FIG. 9. �Color online� Comparison between the simulated
electron-diffraction pattern of �a� our idealized structure and �b� the
pattern experimentally measured by Jiang et al. on a Mn-Si-Al oc-
tagonal quasicrystal. As a guide to the eyes, some reflections in �a�
corresponding to reflections in �b� are highlighted with yellow �light
gray� circles. �b� is reproduced from the paper of Jiang et al. with
the kind permission of the American Physical Society.
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explain, but could be attributed to dynamical scattering
effects.

In fact, the fit between the simulation result and the ex-
perimental diffraction pattern is remarkable considering the
simplicity of our model. Further refinements could include
attempts to go beyond an all-Mn occupation of the atomic
sites, and allowing variations in the atomic decorations of the
tiles based on their local environment.

VI. CONCLUSIONS

In this paper, we began with the observation of the crys-
tallization of �-Mn grains in a molecular-dynamics simula-
tion of a simple monatomic liquid. A curious 45° twinning
occurred between these grains, imparting an octagonal sym-
metry to the sample’s calculated diffraction pattern. This
twin law could be traced to the presence of a secondary
crystalline phase, whose unit cell appears as a 45° rhombus
in projection, the sides of which interface cleanly with the
faces of �-Mn unit cells. This provided an explanation for
the observed twin law, and also served as a basis for the
construction of hypothetical structures using these unit cells
as tiles. We extended this to build a detailed structural model
of an octagonal quasicrystal. This model not only shows a
reasonable match to the experimental electron-diffraction
patterns, but is also the only structural model thus far prof-
fered that is consistent with the observation that the tile
edges have the same length as the unit-cell edge of the �-Mn
structure.7,9

We found that energy minimization of this model struc-
ture results in significant changes to the tile decoration and
diffraction pattern, but the overall tiling remains unchanged.
Energy minimization, then, yields an alternative octagonal
structure model. This finding—that a single-component sys-
tem of particles interacting via a spherically symmetric po-
tential exhibits a mechanically stable energy minimum con-
figuration with an octagonal diffraction pattern—is of
significant conceptual interest. It demonstrates that the struc-
tural complexity of octagonal quasiperiodic order experi-
mentally observed in multicomponent intermetallic phases,
with pronounced directional bonding, may be largely re-
duced to a simple monatomic archetypal quasicrystal.

We envision several avenues by which further insights
into octagonal quasicrystals may be followed using
molecular-dynamics simulations. The first would be the pur-
suit of a modified version of our pair potential that is prone
to the crystallization of an octagonal phase. One could also
imagine studying possible decomposition routes for octago-
nal phases, by annealing samples of our ideal quasicrystal
structure model using the present potential. Insights into the
ways octagonal tilings are stabilized could be approached
through the analysis of the energetic relevance, for our spe-
cific tile decorations, of the cluster coverings proposed and
analyzed for octagonal phases.29–31

In advance of these future endeavors, we can draw some
structural conclusions from our model. It reaffirms the close
structural relationship between octagonal quasicrystals and
the �-Mn structure inferred from experimental investiga-
tions. In terms of local geometries, 83 helices play a promi-

nent role in both, as Hovmöller et al.20 assumed in their first
structural model. However, a curious difference occurs in
how these helices pack and interpenetrate to form the struc-
tures of octagonal phases and �-Mn. In �-Mn, symmetrically
equivalent helices of this form propagate along a, b, and c, in
accord with the structure’s cubic symmetry. These helices are
tightly interpenetrating, with each atom lying simultaneously
on at least two helices.

The octagonal phase structure is, however, decidedly
uniaxial. The structures of these materials, in our model, can
be constructed by placing 83 helices at the vertices of a 2D
octagonal tiling of squares and rhombi �in projection� with
the same handedness and phase. The remaining spaces are
then filled to form unit cells of the �-Mn and rhombic phase
structures for the square and rhombus tiles, respectively. No
reference is made to any sort of coupling between neighbor-
ing helices. This uniaxial character is emphasized in our
simulated electron-diffraction patterns. Our ideal structural
model, designed to reproduce the results of diffraction ex-
periments, shows an absence of reflection conditions con-
nected with the 41 screw symmetry of these helices perpen-
dicular to the octagonal axis. An intriguing question is how
this transformation from independent helices in quasicrystal-
line phases to tightly interconnecting helices in the �-Mn
structure connects to the relative stabilities of these struc-
tures, and the kinetics for decomposition of octagonal phases
into �-Mn-type ones.

Connections between octagonal phases and their twinned
�-Mn-type decomposition products can also be seen on a
larger length scale than their helical building units. If, as we
see in our simulations and was hypothesized by Kuo et al.,7

the twinning in the experimentally observed �-Mn phases is
mediated by small crystallites of the rhombic phase, then
both the octagonal phase and their decomposition products
consist of the same square and rhombic tiles. Indeed, one
could imagine this decomposition following an aggregation
of square tiles into domains, with rhombic tiles segregating
to the domain surfaces or merging to form new square tiles.
Viewing this decomposition in rewind mode, we can portray
octagonal quasicrystals as derived from �-Mn via twinning
on a progressively finer and finer length scale, until the do-
mains consist of only one or two unit cells. We see then that
in the case of octagonal phases there is a continuity between
quasicrystals and twinned crystals; they represent the same
interfacial phenomena occurring on different length scales.
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APPENDIX: DETAILS OF POTENTIAL FUNCTION AND
MOLECULAR-DYNAMICS SIMULATIONS

Pair interaction appear to be sufficient for modeling liquid
metals.32–34 The pair potential used in the present study was
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constructed to imitate the interionic interaction in simple
metals, consisting of a short-range repulsive core and a
longer-range oscillatory part. The latter is meant to represent
the Friedel oscillations35 which are characteristic of the ef-
fective interionic potentials in simple metals. The period of
these oscillations is determined by the Fermi wave vector KF
which is a function of the density of valence electrons. The
functional form of this potential is

V�r� =
A exp��r�cos�2KFr�

r3 + BrP + V0. �A1�

We used parameters for this potential which were previously
determined to encourage icosahedral arrangements in the
first coordination shell.36,37 This was achieved by putting an
energy penalty at the distance of 	2 times that of the first
potential minimum, to discourage the formation of cubic
structures. The same liquid, at a higher density than that
explored here, has also been observed to crystallize in the
�-brass structure.38

The potential is shown in Fig. 10, along with two other
well-known potentials for comparison, the icosahedral �IC�
potential of Dzugutov39 and the Lennard-Jones potential. The
IC potential also induces icosahedral short-range order and
was used in simulations of a dodecagonal quasicrystal22 and
a �-phase-type structure.40,41 All three potentials have nearly
identical short-range repulsive parts.

The simulations were performed using reduced units. The
reduced units correspond to those of the Lennard-Jones po-
tential. In practice this means that the length unit is defined
as the onset of hard repulsion, corresponding to twice the
particle radius. The mass unit is the mass of a single particle.
The energy unit is equal to the depth of the first minimum of
the potential and the time unit is derived from the other
three.

The simulation was performed at the constant number
density �=0.84 particles per unit volume with 16384 �=16
�16�16�4� particles. Newtonian equations were inte-
grated using a second-order finite difference method, the
leap-frog version of the symplectic Verlet algorithm.42 Tem-
perature adjustments of the system were performed by scal-
ing the velocities of the particles. After each change in tem-
perature an equilibration period followed. Crystallization
occurs at a temperature of T=0.45 in our simulation units
�note that the current potential in Fig. 10 is scaled. In that
scale the crystallization temperature is T=0.64�. After crys-
tallization, the resulting particle configurations were treated
with a steepest-descent algorithm to remove the static of
thermal motions and yield the inherent structure.43
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